The maximum entropy principle and volumetric properties of Orlicz balls

نویسندگان

چکیده

We study the precise asymptotic volume of balls in Orlicz spaces and show that intersection two undergoes a phase transition when dimension ambient space tends to infinity. This generalizes result Schechtman Schmuckenschläger (1991) [32] for ℓpd-balls. As another application, we determine ratio 2-concave ℓMd. Our method rests on ideas from statistical mechanics large deviations theory, more precisely maximum entropy or Gibbs principle non-interacting particles, presents natural approach fresh perspective such geometric volumetric questions. In particular, our explains how p-generalized Gaussian distribution occurs problems related geometry ℓpd-balls, which are function is M(t)=|t|p.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Relevance of Maximum Entropy Production Principle and Maximum Information Entropy Principle in Biology

We start this talk posing the question, is there any physical principle that can serve as a selection principle in biology too? One of the first undertakings in this direction, conducted by Prigogine and Wiame [1] noticed correctly that biological processes are irreversible and as such should be described within irreversible thermodynamics. Since irreversible processes are characterized by entr...

متن کامل

Objective Bayesianism and the Maximum Entropy Principle

Objective Bayesian epistemology invokes three norms: the strengths of our beliefs should be probabilities, they should be calibrated to our evidence of physical probabilities, and they should otherwise equivocate sufficiently between the basic propositions that we can express. The three norms are sometimes explicated by appealing to the maximum entropy principle, which says that a belief functi...

متن کامل

Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy

Absrmez-Jaynes’s principle of m@mum entropy and KuUba&‘s priodple of min imum cromentropy (mhlmum dire&d dfvergenoe) are shown tobeunfquelycomxtmethodsforhductiveinf~whennewinformnt ionlsghninthefomlofexpe&edvalues.ReviousjILstit icatioaslLve htuiUvearguma@andrelyonthepro~ofentropyanderossenhppy lasinfmersmes.‘Illeapproarbben?that reasoMble methodsofhductiveinfere~shouidleedto~nsistentresuitswh...

متن کامل

Information Entropy Dynamics and Maximum Entropy Production Principle

The asymptotic convergence of probability density function (pdf) and convergence of differential entropy are examined for the non-stationary processes that follow the maximum entropy principle (MaxEnt) and maximum entropy production principle (MEPP). Asymptotic convergence of pdf provides new justification of MEPP while convergence of differential entropy is important in asymptotic analysis of ...

متن کامل

Remarks on the Maximum Entropy Principle with Application to the Maximum Entropy Theory of Ecology

In the first part of the paper we work out the consequences of the fact that Jaynes’ Maximum Entropy Principle, when translated in mathematical terms, is a constrained extremum problem for an entropy function H(p) expressing the uncertainty associated with the probability distribution p. Consequently, if two observers use different independent variables p or g(p), the associated entropy functio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2021

ISSN: ['0022-247X', '1096-0813']

DOI: https://doi.org/10.1016/j.jmaa.2020.124687